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Abstract. Chaotic behaviour of time-dependent spherically symmetric SU(2) Yang-Mills- 
Higgs system near the ' t  Hod-Polyakov monopole solution is investigated by calculating 
the maximal Lyapunov exponents. As a parameter depending on the self-interaction 
constant of scalar fields incleases there is a phase-transition-like behaviour from order to 
chaos in the system. Presence of Higgs scalar fields reduces chaos in the Yaw-Mills system. 

1. introduction 

Recently much interest has been focused on the question of non-integrability and chaos 
in classical non-Abelian gauge theories. The spatially homogeneous Yang-Mills system 
(YMCM) is non-integrable and shows strong chaotic properties in general. This has 
been established by many authors using various analytical and numerical techniques 
SUGII a> LILC siuuy U, LIK ~r r>rawr r ry  U L  prriuur~ S U I U L I U ~ ,  T V I I I U ~ C  X G L I U I I ~ ,  ca iuiauun 
of Lyapunov exponents, singular point analysis, etc (Matinyan et a/ 1981a, Nikolaevskii 
and Schur 1982, 1983, Asatryan and Savvidy 1983, Savvidy 1984, Gorsky 1984, Steeb 
et a/ 1986, Furusawa 1987, Villarroel 1988, Karkowski 1990.) Studies on the more 
important and more realistic spacetime-dependent systems are much less in number. 
Studies on such non-Abelian field theoretic systems are of relevance in understanding 
q-ark cnnfineme-? ix GCE, mnxpn!e s!abi!i!y, etc. S!ady of spa!io-tempnrz! chaos i:: 
itself is also very interesting. Matinyan et al (1986, 1988) showed that the space- 
time-dependent Yang-Mills system can also exhibit dynamical chaos. They studied 
time-dependent spherically symmetric solutions of the SU(2) Yang-Mills system, in 
particular the Wu-Yang monopole solution. Exponential instability of trajectories was 
found using the Fermi-Pasta-Ulam technique of studying the distribution of energy 
among different harmonic modes. Kawabe and Ohta (1990) studied the system further 
by calculating the induction period, the equal time correlation and the maximal 
Lyapunov exponents and showed the existence of chaos in the YM system. Using the 
technique of Painlev6 analysis Joy and Sahir (1989) have recently shown that time- 
dependent spherically symmetric SU(2) Yang-Mills and Yang-Mills-Higgs systems 
are non-integrable. 

Chaotic behaviour of classical systems with spontaneous symmetry breaking is also 
very interesting and first investigations were made by Matinyan et a/ (1981b). They 
found an order to chaos transition in the spatially uniform Yang-Mills system with 
Higgs scalar fields (YMHCM), as the vacuum expectation value of Higgs field is changed. 
Recently Matinyan et a/ (1989) performed some preliminary numerical calculations 
on time dependent spherically symmetric SU(2) Yang-Mills-Higgs system (SSYMH) 
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and showed that there can be chaos. Details of chaotic behaviour of SSYMH is unclear 
and whether there is an order to chaos transition similar to YMHCM is an open question. 

In this paper we present the results of a numerical study on the chaotic behaviour 
of the SSYMH system. We consider specifically the 't Hooft-Polyakov monopole sol- 
ution. Because of the large mass of the monopole, quantum fluctuations are reduced 
and the classical system may be a good approximation to the real quantum case. We 
find a phase-transition-like behaviour from order to chaos as we tune the parameter 
which depends on the self-interaction constant of scalar fields. For our study we 
discretize the system into a collection of interacting coupled nonlinear oscillators and 
calculate the maximal Lyapunov exponents for various parameter values and different 
number of oscillators. Calculation of maximal Lyapunov exponents is a reliable 
criterion to determine whether a system is chaotic or not. 

In the next section we briefly describe the system under investigation. We present 
the numerical techniques applied and results in section 3. Section 4 contains our 
conclusions. 
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2. Yang-Mills-Higgs system: 't Hooft-Polyakov monopole 

't Hooft (1974) and Polyakov (1974) discovered magnetic monopoles as finite energy 
solutions of non-Abelian gauge theories. They considered the Georgi-Glashow model 
with gauge group SU(2) broken down to U(1) by Higgs triplets. The Lagrangian of 
the model is 

(1) y=-i ,F;,F+""+~D,@"D+@" - v(+) 
where 

F l u =  J,A: - J,A;+ g&.b,A;A', 

D w @ o  = J+@o + g&abcA:@c 
and 

V ( @ ) = -  A (  + 2 -- ; I ) *  . 
4 

The equations of motion are 

D,Ffi"" = - g&abr(D+@b)+c (2) 
D+D"@. = ( m2 - A@2)@. . 

The vacuum expectation value of the scalar field and Higgs boson mass are ( @ 2 )  = F'= 
m2/A and M H  =\%i F respectively. Mass of the gauge boson is M,=gF.  Using the 
time-dependent 't Hooft-Polyakov ansatz (Mecklenberg and O'Brien 1978): 

where r, = x, and r is the radial variable, the field equations (2) can be written as 
r*(d?-J: )K = K ( K 2 + H 2 -  1) 

(4) 
2 K 2 - m 2 r 2 + y  
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With p = h / g Z  = M % / 2 M : .  and introducing the variables 5 = M,r and T =  M,t, the 
equations (4) become 

(J : -J : )K  = K ( K 2 +  H 2 -  l)/(‘ 

(J: -J?)H = H ( 2 K 2 + p ( H 2 - c 2 ) ) / g 2  

Total energy of the system E is given by 

K ’ H ~  + y ( H 2 - 5 2 ) 2 ) d ~ .  p 
+T 45 

A time-independent version of the ansatz (3) gives the ’t Hooft-Polyakov monopole 
solution with winding number I .  For finiteness of energy the field variables should 
satisfy the following conditions, 

H - 0  K - 1  as 5-0 

and 

H - 5  K+O as 5-00. 

The ’t Hooft-Polyakov monopole is more realistic than the Wu-Yang monopole; it is 
non-singular and has finite energy. In the limit p + 0, known as the Prasad-Sommerfeld 
(PS) limit, we have the static solutions, 

K(t)=[/s inh 5 
H ( # )  = 5 coth 5 - 1. 

It has not been possible to find exact non-trivial solutions for p # 0 analytically. 

3. Lyapunov exponents and order to chaos transition 

Non-integrable dynamical systems may show irregular, random, or unpredictable 
behaviour known as chaos. To study chaos there exist many techniques, mostly 
numerical. Chaos is characterized by a sensitive dependence on initial conditions, 
nearby trajectories diverging exponentially. One quantitative measure of chaos is the 
magnitude of Lyapunov exponents (LE), which are the average rate of exponential 
divergence of nearby trajectories. Calculation of LE is a reliable and convenient way 
to study chaos. If the maximal LE is greater than zero the system is said to be chaotic. 
Maximal LE can be calculated in the following way. 

Let 

x j  = ‘ q x )  i =  l , . .  . , n (7) 
where n is the dimension of the system and x is an n-vector, be a general finite 
dimensional dynamical system. Here the over-dot denotes time derivative. The 
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corresponding linearized variational system is given by 
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One-dimensional LE are defined as (Oseledec 1968) 

where 1 . 1  indicates the norm. If one chooses the initial variations y,(O) at random, one 
obtains maximal LE. Since for a chaotic system Iy(f) l  increases exponentially with time, 
in numerical calculations we have to renormalize it at a suitable time step (Lichtenberg 
and Lieberman 1983). 

For our study we discretize the original infinite dimensional system ( 5 )  to obtain 
a set of N coupled anharmonic oscillators. The discrete model is given by 

K ( i + l ,  i ) - 2 K ( i , f ) + K ( i - . l ,  t )  - K ( i , t ) [ K ( i ,  f ) 2 + H ( i , t ) 2 - l ]  
h2 ( i h ) 2  K ( i ,  i ) =  

H ( i +  1 , t )  - 2 H ( i ,  f ) +  H ( i -  1,  t )  
112 

H ( i ,  1 ) =  

i = l , .  . . , N - 1  
- 2 H ( i ,  f ) K ( i ,  f ) 2 - p H ( i ,  t)[H(i, f ) 2 - ( i h ) ’ l  

( i h ) 2  

where h is the space discretization step. Corresponding variational system is obtained 
by discretizing the following equations: 

( 3 K 2 +  H’- 1)SK +2HKSH 

(11) 
t2 ( a g - 8 : ) ~ ~  = 

( ~ ; - J : ) s H  = 
( 2 K 2 + 3 f i H 2 - P 5 2 ) S H + 4 K H S K  

t2 
For calculating LE we have t o  solve system (10) along with the variational system 

obtained from ( 1  1 ) .  In the system, there exist two parameters, the energy and the value 
of p. For the numerical integration we can start from arbitrary values of K and H. 
But we are interested in the evolution of ’t Hooft-Polyakov monopole solutions. Static 
monopole solutions occur at the minimum of the energy functional C ( p )  for a fixed 
0, so we choose K ( i , O )  and H ( i . 0 )  as the static solution of the Y M H  system, which 
we find using a finite difference method for solving boundary value problems. We use 
the asymptotic form of the solutions for fixing the boundary values. C ( p )  for different 
p values are given in table 1 .  Static solutions of SSYMH for some p values are shown 
in figures l (a )  and l (b ) .  

We use fixed boundary conditions and numerically solve the system (IO)  with static 
solutions as initial conditions along with the discretized system obtained from (11). 
For our calculations we take N = 100 and the discretization step h = 0.1. In figures 
2 ( a )  and 2(b) plots of Le  versus time are given for some values of P. We calculate up 
to f = 1000.0, which is sufficient for obtaining asymptotic values of LE. We used an 
IMSL routine for the Bulirsh-Stoer algorithm for numerical integration of the differential 
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Table 1. C ( 8 )  and maximal LE for different p YBIUCS,  
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0.0 
0. I 
0.5 
1 .o 
2.0 
5.0 

10.0 
50.0 
75.0 

100.0 
200.0 
500.0 

1000.0 
5000.0 

1.000 
1.006 
1.193 
1.243 
1.302 
1.386 
1.451 
1.600 
1.641 
1.671 
1.762 
1.971 
2.301 
4.641 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1.54E-3 
2.32E-3 
1.13E-2 
2.54E-2 
7.01E-2 
1.00E-I 

0 0 2 4 6 
3 3 

Figure 1. K and H I S v e r s u s 5  ( 0 )  For(a) P =O.O, (b) p =0.1, i c )p  = 1.0,and (d)  p = 100.0. 
( b )  F o r ( a ) p = O . 5 , ( b ) P = 5 . 0 , a n d ( c ) P = S O O . O .  

equations with a tolerance value lo-'. Calculations are done in double precision in a 
CYBER 180/830 computer. In the case of p = 1000 and p = 5000 we used a higher 
tolerance value because of the enormous amount of computer time required otherwise. 
We did the calculations with high accuracy such that change in energy is less than 1%. 
Lyapunov exponents for different values of p are also given in table 1. From figure 3, 
where LE versus lo@) is plotted, we can see that there is a transition from order to 
chaos near p = 75.0. Up to p = 50.0 LE is zero within the limits of numerical accuracy. 
For p = 75.0 LE becomes positive and reaches an asymptotic value 1.2 x lo-'. For higher 
p values we get higher and higher positive LES. However LE is not seen increasing 
indefinitely with p. At the transition region the increase is rapid but as p increases 
further the rate of increase in LE falls. Asp +a, LE appears to attain an asymptoticvalue. 
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Figure 2. Maximal LE ( A )  versus time. ( a )  Far (a) p =O.O, (b) p = 10.0, and [c) p =50.0. 
( b )  for (a)  p = 75.0, ( b )  p = 100.0, and (c) p = 500.0. 

iag P 
Figure 3. Maximal LE [ A )  versus log[p). 

We have repeated the calculations with different values of N also. Results are 
qualitatively the same as those for N = 100. LE for N = 16, 32, 64, 100 are given for 
some p values in table 2. Increasing N does not have much effect beyond N = 32. 
This indicates that the results obtained are good approximations to the original infinite 
dimensional system. This behaviour can be compared to the results obtained by Livi 
ef al (1986) for a Fermi-Pasta-Ulam chain of anharmonic oscillators. For the FPU 

P-model LE reaches an asymptotic value when the number of oscillators is N = 20-40. 
For small N values boundary values also have effects on the dynamics. Asymptotic 
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Table 2. Maximal LE for different values of N and p. 
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LE 

P N=16 32 64 LOO 

50.0 0.00 0.00 0.00 0.00 
75.0 0.006 0.0012 0.0013 O.OO!S 

100.0 0.0015 0.0021 0.0021 0.0023 
200.0 0.027 0.0091 0.0105 0.01 1 

values of K and H are reached only after .$=3-4. The quartic oscillator system 
corresponding to N = 1 is non-integrable and chaotic for all p values. 

4. Conclusions 

Our calculations show that there is a phase-transition-like behaviour from order to 
chaos in the SU(2) SSYMH system. This result is i n  agreement with that obtained in 
the case of a spatially homogeneous YMH system, where Higgs field manifests only as 

and in that case there are no terms dependent on the self-interaction constant. There 
is only one parameter for YMHCM, namely g2E/47iMw.  On the other hand, here we 
considered the time evolution of both gauge and scalar fields and there exist two 
parameters C ( p )  and p. p depends on the self-interaction constant A. Since we are 
interested in monopole solutions we took the minimum value of energy functional 
C ( p )  for a specific p value. It is known that as p increases the effect of Higgs field 
decreases and when p + m the system becomes purely Yang-Mills, which is highly 
chaotic. The effect of Higgs scalar fields is to reduce the stochasticity of the YM system. 
In the central part of the monopole the scalar field is approximately equal to zero and 
the YM field which dominates this region displays chaotic behaviour. Outside the 
monopole core the Higgs field approaches its mean value and the V M  field behaves in 
a regular manner. From our study one can see that 't Hooft-Polyakov monopole 
solutions show irregular behaviour in time, and they are exponentially unstable. Our 
results can be compared with those of Brandt and Neri (1979) in  the context of 
Wu-Yang monopoles. They have shown that negative modes exist in the spectrum of 
the operator describing small perturbations of monopole solutions, implying exponen- 
tial growth of perturbations with time. Solutions with magnetic charge q 1 are 
unstable. Arbitrary continuous deformations of the field configurations do not change 
the topological charge during the evolution of the fields with time. The evolution of 
the fields in the central part of the monopole can b e  arbitrarily complicated and may 
oscillate or  vary ergodically. Though in the case of the monopole classical description 
may be a meaningful approximation to the quantum case the implications of the result 
in the exact quantum field theory of this object is a separate issue requiring detailed 
study. 

r h n  . ~ n r . . r , m  n r r e r t o r i n r  .,-1..a C A -  L' :..,.-aocac +Lo-- zn  -- ..-A-- t,. -L....- f -"-" :e:-.. 
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